CHAPTER 3 METHODS

Research Design

The development of a research design for any phase of archeological investigation insures adequate technical planning for compliance purposes and provides the means for considering and addressing research issues. A number of research issues may potentially be addressed because the archeological resources of this project are to be used for interpretive purposes. Guidance for the project was established in a Scope of Work document which was prepared by the office of the Historic Preservation Division (HPD). Georgia’s HPD guidelines include requirements which insure that basic compliance questions are addressed. These include accurate locations of archeological resources, determination of the horizontal and vertical extent of the site, chronology, and site function. A determination of eligibility to the National Register of Historic Places is integral to the process. Our research design provided a framework consistent with other ongoing SAS surveys and site investigations around Lake Oconee.

Research issues vary from project to project depending upon the amount of information previously recorded in an area. With respect to the current project, we are dealing with an area that has received as much attention from archeologists as any part of the state. The core of that research lies in the work conducted by the University of Georgia in Wallace Reservoir more than two decades ago. Research has continued since that time in the counties surrounding Lake Oconee. Relevant archeological information has been produced by excavations sponsored by the University of Georgia and Penn State University, extensive survey work in the Oconee National Forest, and by numerous CRM surveys. A substantial amount of information has been gained as the result of work conducted by SAS on nearby Reynolds Plantation (Ledbetter 1998; Ledbetter et al. 2003, 2004).

Most of the project area may be characterized as an upland clearcut tract. Depending upon the amount of vegetation regrowth, such areas may often be best examined through intensive surface collection because artifacts are frequently exposed and unfortunately, little topsoil generally remains after clearcutting and replanting. Unlike less disturbed and heavily wooded tracts which require shovel testing for site identification, clearcut tracts provide better prospects for the recovery of diagnostics because a greater portion of the site may be examined. There is also greater confidence for assessing the intensity of occupation on sites which produce meaningful artifact samples. It should be noted that portions of the project area have not been “landscaped” by timber companies. Sizeable areas remain which still retain preserved surface features associated with the old Little Plantation. A series of basic research questions have been developed based in large measure on the knowledge procured from previous research in the area.

Research questions to be addressed for the prehistoric period include the following.

1. What is the extent and intensity of prehistoric settlement in the project area? Because the project tract is an upland location, prehistoric settlement patterns are expected to be similar to areas previously surveyed on Reynolds Plantation (Ledbetter 1998), and along Shoulderbone Creek (Pluckhahn 1997, Ledbetter 2003), and surrounding upland tracts rather than the floodplain settings of Lake Oconee. Prehistoric sites identified in upland settings of the region are consistently dominated by low density Archaic lithic scatters and intensively occupied Mississippian farmstead sites. That pattern is also suggested by data from previous survey work within and near the project area (DePratter 1976, Manning et al. 1985). With respect to the lithic scatters, it may be possible to retrieve artifact samples of sufficient size to discover similarities and differences to settlement in the surrounding area. Observations concerning the distribution of Mississippian period sites in the project area should produce important data for further refining settlement patterns in a region where Lamar sites seemingly occur everywhere. Other types of Mississippian sites (non-habitation, resource extraction) should be looked for although it is unclear how they might be recognized if pottery is absent.

2. Who produced the upland lithic scatters? According to long held perceptions, upland quartz lithic scatters are Middle Archaic and most are associated with people who manufactured Morrow Mountain points. Half a century ago, those sites were associated with the Old Quartz Culture (Caldwell 1954). A substantial amount of survey work conducted in the uplands around Lake Oconee has failed to produce a preponderance of Morrow Mountain sites (Pluckhahn 1997, Ledbetter 1998, Ledbetter et al. 2003). These more recent surveys have produced a range of material dating from the late Paleoindian through the Late Archaic. Hopefully, a sufficient number of diagnostics will be recovered to address the issue of upland occupation during periods other than the Middle Archaic.
3. How do the upland quarry quarries, known to be quite common in the Lake Oconee area, relate to Archaic and possibly earlier and later period settlement systems? We know from the previous surveys that quartz deposits are abundant within and near the project area. If actual quarry sites exist within the project area, will they produce evidence indicating focal points of occupation during specific periods, such as the Middle Archaic, or will they appear as briefly visited resource acquisition areas utilized infrequently at some unknown time during prehistory? With this in mind, can the quarries be tied to specific time periods? Will diagnostics be present or will there be anything distinctive about the locally available quartz that will allow identification on nearby habitation sites? If evidence of more intensive occupation is actually found on or near the quarries, does it represent evidence of very specific activities such as biface produce or will the tools and debris recovered indicate a variety of activities?

4. Does the survey data shed any light on who built the large stone feature traditionally known as the Little Rock Eagle effigy mound. The two effigy mounds in Putnam County have been viewed by archeologists as a ceremonial site devoid of substantial evidence of habitation (Kelly 1954, Petrullo 1954, Williams and Freer Harris 1998). At the present time, a consensus has evolved that places the effigy mounds in the Woodland Period (Williams and Freer Harris 1998). That view is based in large measure on previous excavations of rock mound sites in the eastern United States which have produced Woodland Period artifacts (for Georgia examples see Jefferies 1976, Jefferies and Fish 1978). A very few researchers are in agreement with Petrullo’s (1954) interpretation of an earlier (Archaic) period of construction (Mahan 1992, as an example). The discovery of Woodland sites or major sites of other time periods near the rock mound should be assessed with respect to possible association. Associations with other rock features in the area should be considered. Smaller rock piles are known to be abundant in the area but most may be readily interpreted as historic land clearing features. The possibility that some of these piles, particularly the larger examples, may have been constructed during prehistoric times, must be considered.

Research questions that may be addressed with respect to historic sites include the following.

1. What types of historic sites are expected to be found in the project area and what are the prospects that any retain preserved features or midden deposits following years of logging? We know from prior survey and testing that nineteenth and early twentieth century farm house sites are plentiful in the portions of the tract (Manning and Bauer 1985, Gardner 1995). Surveys conducted in similar tracts in the region show that many of these historic sites have been heavily disturbed by logging. With respect to time of occupation, the post-bellum settlement patterns may be relatively well documented using the 1919 soil map, but the settlement patterns associated with the antebellum plantations, which are known to have been present in the project area, will be different and less easy to define. In this respect, the field identification of nineteenth century road networks will be important.

2. Are there any archeological sites associated with the frontier period of settlement? The period of the 1780s through the first decade of the nineteenth century was a period of frequent skirmishing between Indians and Georgians. According to historical accounts, early farmsteads and settlements were frequently fortified. More substantial block houses were constructed by the State of Georgia for defense of the Indian frontier during the 1790s on the eastern side of the river. Maps of the era show one blockhouse located across the river from the project area and one of the 1790s Oconee Forts, known as Fort Twiggs, located a short distance to the south near the mouth of Shoulderbone (see Figure 8). There is no evidence that fortifications were constructed near the project area with respect to the Trans-Oconee Republic in 1794 (see Figure 9). In all probability, the first houses built in the area were quite insubstantial and must have been used for a very short term. To date, the numerous archeological surveys conducted in the region have produced very little information for this period.

3. How do the historic sites within the project area relate to the larger community and what changes in that relationship occurred over time? The project area has always been rural in character with the nearest big towns of Eatonton and Sparta located many miles away. Local histories and newspaper accounts refer to the community as Rockville but during the mid nineteenth century the project area was really associated most with a single large plantation. The Kinchen Little Plantation formerly extended over several thousand acres and essentially all of the project area. The relationships of the plantation owners, who eventually acquired most of the land, and the local community is of interest.

The Putnam, Hancock, and Greene County areas rapidly depopulated following the invasion of the boll weevil just after World War I. Many large tracts of nearly vacant land were purchased by the 1940s by land companies that disassembled or bulldozed the old plantation houses and surrounding tenant houses. One some of the large timber company tracts, the old house foundations have been virtually scraped away from the landscape. In a few cases, the old plantation sites and other domestic sites have remained relatively well preserved. In other cases, the house foundations have been bulldozed during subsequent logging episodes. Often, the houses which collapsed prior to the 1940s are actually better preserved because the logging companies did not have to raze the houses themselves. Our ability to examine any research question is dependent upon the preservation state of the sites themselves.
Literature Review and Archival Methods

Prior to initiation of fieldwork, the Archeological Site Files at the University of Georgia in Athens were checked for information concerning previously recorded sites in or near the project area. In addition to site forms, several archeological reports and manuscripts were found that apply to the project area. Manuscripts and reports containing specific information relating to sites and prior investigations within the project area include DePratter (1976), Manning and Bauer (1985), Gardner 1995a and 1995b). Several reports were also found for previously excavated sites near the project area which were produced in the late 1970s and early 1980s as a part of the Wallace Mitigation Project. The archives of the 4-H Center in Putnam County were examined for additional archeological information. The 4-H Archives contained several original reports, photographs, and miscellaneous files relating to earlier archeological studies conducted in Putnam County.

Various cartographic sources found at the Site Files and University of Georgia Libraries were examined to locate known sites and develop a general prehistoric and historic context scheme for the area. A few maps showing the locations of structures and other landmarks were found at the Site Files and the Map Room of the Science Library. These included a ca 1878 map of Putnam County, the 1919 soil survey map (Figure 53), and Department of Transportation highway maps dating from 1939 (Figure 54). The University of Georgia Map Room also maintains files of aerial photographs originally produced for the Agricultural Stabilization and Conservation Service (also referred to as USDA Soil Conservation Service or SCS) which date from second half of the 1930s through the modern period. The UGA Site Files also maintain files of aerial photographs produced by Georgia Power for the Wallace Reservoir project which date from the early 1970s to 1978. These sources provided the means of determining the locations of structures, roads, and other features which survived during the early to middle portion of the twentieth century. Following field investigations, several of the structures shown of the soil map and early aerial photographs were found to date to the antebellum period.

Figure 53. Portion of the 1919 Soil Survey map of Putnam County showing structures.
As a result of an ongoing archival study conducted by personnel of SAS for Reynolds Plantation in Greene and Putnam County, a substantial amount of historical information had already been acquired for the current project area. A part of that study involves the acquisition of information relating to the manner in which the local plantations interacted with the Curtright Factory which operated during the middle part of the nineteenth century. The Kinchen Little plantation, which occupies most of the project area, had previously received limited research as one part of that larger study. Additional historical information had also been recovered during previous SAS investigations on the nearby Shoulderbone Creek area in Hancock County. We were aware from that work that the Little Plantation also included land in Hancock County near Shoulderbone Creek. Additionally, a detailed genealogical study had been made specifically for the project area nearly a decade ago by Putnam County Historian Jim Marshall. Much of that information is found in a previous study of the Fielder house site (9PM990) which is also located in the project area (Gardner 1995a). As a result of these studies, much of the literature review conducted for this report consisted of re-examination of the files utilized for previous projects.

Additional research was directed towards obtaining information on the identified historic sites within the project area. Putnam, Greene, and Hancock County courthouse records have been the primary source of information for the historic sites previously examined in the area. Some of the courthouse records associated with the project area had been identified during an earlier project (Gardner 1995a). A thorough examination of deed records and probate records for additional properties has been undertaken for the present study.
Research relating to the major plantations and the small farmsteads associated with other individuals required examination of diverse sources of primary and secondary data. Because few published sources exist that relate specifically to these individuals, much of our work has been geared to primary sources. Much of that effort was expended in examining courthouse records, records housed at the Putnam County Library and local historical societies, and the Georgia Archives. Local newspapers proved to be particularly valuable sources of information for this project. The University of Georgia Library maintains microfilm files of all surviving local newspapers printed during the last two centuries. Original copies of some Putnam County newspapers were examined at the local library. The university microfilm collections also included a substantial number of federal records, such as census information. Original documents were also made available from the University of Georgia’s Special Collections at the Hargrett Library. The WPA era photographic from the Library of Congress and the University of North Carolina’s Raper Collection were also researched.

A number of records at the Georgia Archives have been examined. The most meaningful sources of Archives information was found in land grant records and original maps. The following files and records of the Georgia Archives were examined for this project.

1. Microfilmed copies of land lot plats and original surveyors notes for District 2, Baldwin County.
2. Putnam County map files.
3. Incoming letters to Governor Joseph E. Brown (1861-1865) relating to local cotton factories.
4. Notes and manuscripts relating to S.W. McCallie of the Georgia Geological Survey (1900s-1920s).
5. Genealogical files for project area families: Little, Stinson, and Cooper.
6. Vanishing Georgia photograph collection for Putnam County.

A number of secondary sources of information relating to past residents was found in the University of Georgia Libraries in Athens and the public library in Eatonton. Published county and regional histories which provide basic information for the project area and specific references for the former residents and other individuals associated with the history of the project area include Little (1999), Raper (1936, 1943), Rice and Williams (1961), Walters (1995), White (1849, 1854), Wood (1992). Genealogical reports and files were examined at the Putnam County Library, the UGA libraries, and the Georgia Archives. Published biographical information was found a few individuals associated with the project. Sources included (Memoirs of Georgia (1895), Men of Mark in Georgia (Northern 1912), and Who’s Who in America (Marquis 1932). Additional information concerning many families was found in the compilation of Putnam County cemetery records at the Putnam County Courthouse and files made available from the ongoing cemetery study sponsored by the Historical Society.

Our efforts to research the history of archeological research associated with the project area’s Little Rock Eagle Effigy Mound (9PM47) have led to only limited success. The original documents, notes, and artifact collections of C.C. Jones, who is credited with the first recording of the site in 1877, have been widely dispersed to numerous institutions across the county. Most of the records relating to the University of Georgia archeologists, who were later associated with the site, have disappeared. Because of funding limitations at this phase of investigation, our research generally consisted of telephone and E-mail requests for information. The amount of information procured through those requests varied from institution to institution and was generally dependent on the status of cataloging. In a few instances, colleagues volunteered their time while conducting research cut other projects or shared information previously acquired. Frequently, only a small amount of information could be procured in this manner but their efforts proved to be meaningful. It is apparent that a thorough search of the archival material related to the investigations of the effigy mound will be extremely time consuming. Table 3 provides a summary of the sources contacted during our preliminary search.
Table 3. List of Contacted Institutions and Organizations

<table>
<thead>
<tr>
<th>Source</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smithsonian Institution: Special Collections</td>
<td>Hand written text of C.C. Jones Rock Eagle report. Original drawings and other Putnam County reports not found.</td>
</tr>
<tr>
<td>Museum of Natural History (NY) Georgia Collections</td>
<td>C.C. Jones and Steiner artifact collections from Georgia (photographs provided by D.T. Elliott)</td>
</tr>
<tr>
<td>Peabody Museum, Harvard University, Library</td>
<td>According to a letter written by A.R. Kelly in 1953, C.C. Jones’ original notes for the Putnam County effigies were at Peabody Museum. A library staff search produced no files.</td>
</tr>
<tr>
<td>University of Georgia, Hargrett Library, Special Collections</td>
<td>C.C. Jones Files: Original copy of his effigy mound paper (dated Sept. 4, 1877), newspaper clippings of paper (same date), correspondence from Great Britain concerning publication of the Rock Effigies paper; handwritten text and maps of Putnam and Hancock County mounds.</td>
</tr>
<tr>
<td>Duke University Library, Special Collections</td>
<td>C.C. Jones Files: handwritten text and maps of the Hancock County mounds (provided by D.T. Elliott)</td>
</tr>
<tr>
<td>University of Georgia, Department of Anthropology Various Files</td>
<td>Prints of Little Rock Eagle taken in 1939 (photocopies); a 1950 plan map of Little Rock Eagle showing locations of excavations; photograph Little Rock Eagle model made in the 1950s; 1954 photographs of Rock Eagle.</td>
</tr>
<tr>
<td>Augusta Museum</td>
<td>Files of Clemens de Bayou. No pertinent information found.</td>
</tr>
<tr>
<td>Peabody College (Nashville, Tennessee) Special Collections</td>
<td>Charles Edgar Little files: no information relevant to archeology found in the staff’s search.</td>
</tr>
<tr>
<td>Wesleyan College Archives/Libraries</td>
<td>Background information of Dean Leon P. Smith including a manuscript on age measurements of decomposed flint written in the 1930s.</td>
</tr>
<tr>
<td>Columbus Museum, Isabel Patterson files</td>
<td>A few notes related to a 1939 visit (found during a previous study); Additional information is probably present.</td>
</tr>
<tr>
<td>Rock Eagle/4-H Center Archives, Eatonton, Georgia</td>
<td>Master of Petrullo’s 1954 report with original photographs, WPA era map showing Rock Eagle, correspondence for 1990 work at Little Rock Eagle.</td>
</tr>
<tr>
<td>National Park Service, Southeast Archeology Section (Tallahassee)</td>
<td>WPA era files for the Little Rock Eagle site. A 1936 map of Putnam County showing sites. Information and photographs for Rock Eagle and Carroll Village.</td>
</tr>
<tr>
<td>Ocmulgee National Monument (Macon)</td>
<td>NPS records show material from Little Rock Eagle site stored with these collections. Collections of artifacts reported to be from both mounds.</td>
</tr>
<tr>
<td>Georgia Power Company Archives (Atlanta)</td>
<td>1993 photograph of Little Rock Eagle and a copy of a 1939 deed. No additional material found by Georgia Power Company archivist.</td>
</tr>
<tr>
<td>Georgia Historic Preservation Section</td>
<td>Files with photographs of the 1991 investigations at Little Rock Eagle. National Register Nomination documentation for Putnam County.</td>
</tr>
</tbody>
</table>

Informant interviews have been an important source of data and represent one aspect of ongoing research for the area. Information concerning the architecture of old houses and the families that resided in those houses was acquired from Mr. L.A. Copelan, Mr. J.R. Davis, Mr. Larry Manly, and Mrs. Emma Lou (Holder) Reese Fuller, Carol Cross, Janette (Lawrence) Moore, and Millie Copelan Arnold. Some information related to the rock effigy mound has also been procured from these individuals. Additional information about the rock mounds has been procured from Mr. Henry Denham, Mr. Fred Johnson, Mary Kellogg Shepard, and Fred Birchmore. Narratives and transcripts of interviews conducted with these individuals are presented in Appendix C of this report. Photographs, which have been particularly difficult to obtain, were made available by Mrs. Reese who was a member of the Holder family who lived in the old Little Plantation house around 1940s, Putnam County Historian Jim Marshall, Carol Cross, and the Rockville Academy museum.
Survey Field Methods

The survey of the proposed trail system was conducted during the winter and early spring months of 2004 by personnel of Southeastern Archeological Services, Inc. (SAS), with the support of the Office of Historic Preservation. The cutting of the trail was monitored by the principal investigator during the months of February through April, 2005. The archeological survey was normally conducted by a single team of two archeologists, headed by staff archeologist Joel Jones. Mr. Jones was assisted by field archeologist Gordon Martin or the principal investigator. Additional assistance was provided by Historic Preservation Division archeologist Ronnie Rogers. Nick Nicholson (Georgia Department of Natural Resources, Wildlife Resources Division) designed the trail route and worked closely with the archeologist during the flagging process. Flagging of the proposed pedestrian trail route was begun during the winter months and finished by late spring.

Figure 55 shows a preliminary project map which identifies various aspects of the proposed trail network. The pedestrian trail was initially proposed to extend for nine miles but that figure was adjusted to ten kilometers by the project planners prior to fieldwork. The final version of the pedestrian trail covered eight miles (the extreme western segment of the trail shown in the preliminary map was omitted). In an effort to examine the trail route during optimal winter survey conditions, SAS surveyed all the trail segments shown on the preliminary map. A relatively small amount of resurvey was required for the final flagged route during April and early May, 2004. In all, approximately 12 miles (19.3 km) of trails were surveyed for archeological sites. Figure 56 shows the areas surveyed and identifies which sections followed existing roads and which sections required new cuts.
Standard survey field methods were employed in accordance with a scope of work prepared by the Office of Historic Preservation in consultation with the principal investigator. Basically, the survey crew followed flagging which marked the trail and searched for evidence of archeological sites. The expected impact area of the trail will be only three to four meters in width but a wider survey corridor was examined (roughly 20 m wide). The basic survey procedure consisted of carefully searching exposed surface areas and excavation of 30 cm diameter shovel tests at 30 m intervals. Positive shovel tests were marked in the field with surveyor’s flagging bearing the field site number and shovel test number. Shovel tests were not excavated in highly disturbed areas such as the borrow pits, scoured gullies or on most moderate to steep slopes. The soil from the shovel tests was screened through quarter inch mesh hardware cloth.

Figure 56. Map showing archeological survey coverage of proposed trail system.
When evidence of an archeological site was found, the boundaries of the site were usually determined using additional shovel tests. The shovel tests used for defining site boundaries were generally excavated in a cruciform pattern at intervals of 10 to 20 m. In some instances, sites were identified in areas with excellent ground exposure which allowed boundaries to be defined by the distribution of surface material. On some historic sites, boundaries could best be determined with a metal detector. Within portions of the project area, shovel tests were found to be poor indicators of sites because of severe erosion which resulted in very shallow soils and low artifact densities. Scanning with a metal detector quickly defined site limits based on the distribution of small metal objects such as nails. No systematic metal detecting was conducted during the survey phase. In the case of the extremely large Little Plantation site (9PM1392), the time required for systematic shovel testing would have been prohibitive. In the view of the principal investigator, the site boundaries were best estimated using the distribution of the abundant surface features such as house foundation remains, cemeteries, and rock terraces. Most of those features were visible on the early aerial photographs and the distribution of the identified structures corresponded to those shown of early twentieth century plats for the Little Place. Site 9PM1392 is comparable to a small village and it has been recorded as a single site rather than breaking it down into individual house sites.

Information was recorded for each identified site on a field site form. That form included a place for sketch map and notes concerning various aspects of each site. Site locations (UTMs) were in the field using a hand held GPS unit. Those locations were rechecked in the lab to insure a level of accuracy. A transit was used to map important features on the more extensive historic sites and two cemeteries. Photographs were taken of each site identified in the field. An effort was also made to record rockpiles. A short form was used to record dimensions and any important characteristics. This proved to be quite time consuming and as a result, only rock piles within approximately 20 m of the flagged trail were recorded. Selected rockpiles were also photographed. Recovered artifacts were bagged by provenience with the project name, site number, shovel test number or surface collection, soil profile descriptions, and the date written on each bag.

In some cases, the trail route was slightly altered by the archeologists to avoid potentially sensitive site areas. This was accomplished by simply moving the flagging tape. It should also be mentioned that a few sites were recorded beyond the trail corridor. A couple of these sites were recorded while examining possible parking lot locations. A few others were recorded along trail segments which were eventually dropped from the project. One or two outlying sites were recorded while searching for suspected cemeteries associated with the old community. Basically, the crew recorded every site they stumbled upon.

All portions of the project area were surveyed systematically using a USGS 1:24,000 topographic map (Rockville) for reference. The location of all shovel tests, current vegetation and land use conditions, sites, occurrences, rock piles, and other cultural features were plotted on enlarged copies of the quadrangle map (220%). The enlarged map allowed features to be mapped easily when used with a hand held GPS unit. The project field maps, site forms, and rock pile forms will be curated with the permanent records of the project. This level of investigation was hopefully adequate to address the prime goal of the project, which was to locate, delineate and evaluate the research potential of sites in the project area.

An archeological site is defined as a locations that once contained structures and features, or artifact accumulations that are older than 50 years, regardless of the current preservation status. For this project, a site is defined by two or more artifacts of one broad cultural period recovered from shovel tests or the surface. Isolated artifacts, or more than one artifact in questionable context, are considered occurrences. The project area contains no standing structures older than 50 years.

Evaluation Methods

Sites were evaluated using established criteria for inclusion of sites in the National Register of Historic Places using National Park Service (36CR60.4) guidelines. Criterion D specifically addresses archeological sites and states that significant sites "have yielded, or may be likely to yield, information important in prehistory or history." Because a definitive evaluation was not possible at the survey level for several sites, three eligibility designations were employed: Eligible, Potentially Eligible, and Ineligible. Potentially eligible sites require further investigation to determine significance.
Important information may consist of data that provides new, non-redundant, non-trivial data beyond that which can be gathered by survey or archival methods. This essentially equates to sites with well preserved artifact deposits and features which can yield insights into lifeways, subsistence, and absolute chronology. For the purpose of this project, a prehistoric site is considered eligible if:

1) The temporal and cultural identification is established; and
2) it appears relatively undisturbed; and
3) there are sufficient amounts or types of cultural material present for meaningful analysis or to suggest the presence of intact features, or
4) the types and diversity of artifacts suggest an unusual or rare type of site.

For this project, an historic site is considered eligible if:

1) It can be directly tied to an important historical event or person, or an historic theme such as a community or industry, or
2) it contains information that cannot be found in archival or documentary sources; or
3) it is an example of a rare site type; or
4) it is a exceptional well preserved example of a common site type.

For this report, the primary reasons for recommending any site as ineligible are:

1) the site has been disturbed to the extent that there is little potential for identifying meaningful artifact distribution patterns or locating features; or
2) the site is not badly disturbed but so little cultural material remains on the site that there is little potential for conducting further meaningful research; or
3) the archeologically recoverable data is not considered important relative to data that can be gathered by other means. This statement applies only to the most commonplace site types for which many examples have been previously excavated.

Laboratory Methods

With respect to artifacts, the principal investigator has made a concerted effort to maintain consistency in artifact analysis for the various projects conducted in the Lake Oconee area by SAS since 1997. All recovered artifacts were returned to SAS for processing and analysis. Analysis was based on standardized macroscopic technological and typological sorting procedures.

Historic ceramics were quantified by ware groups (refined earthenwares, porcelain, stonewares) and by temporally sensitive differences in the manufacturing technique (creamwares, pearlwares, whitewares, ironstones, etc.) and decoration (transfer printing, hand painting, decal decoration, etc.). Bottle glass fragments were described by color and, if possible, by manufacturing technique and functional criteria. Nails were categorized by manufacturing technique (wrought, machine cut, and wire nail) and measured if complete. Measurements were taken on window glass and the most complete examples of bricks.

All other historic artifacts were individually described by functional type. Essentially, historic artifacts were analyzed and described using a classification system developed by Gray (1983) which is based upon the work of South (1977). This system has been adapted for recent reports by Elliott (1996) and Ledbetter et al. (1997, 2003).

Prehistoric artifacts were sorted into functional categories that included pottery, chipped stone, and subsistence remains. Aboriginal pottery was sorted by temper type and surface treatment. All pottery recovered during the project was tempered with either fine sand or larger pieces of grit. Surface treatments included stamping and incising. The recently published volume *A Guide to Georgia Indian Pottery Types* (Williams and Thompson 1999) was used as a guide to published type descriptions. The aboriginal pottery recovered from the project area represented types commonly encountered during previous investigations of Wallace Reservoir. As such they were readily identifiable through the use of a number of sources.
Prehistoric lithic artifacts were identified by raw material and sorted into tool and debris categories. Lithic raw material categories are based on type collections procured during the Wallace Mitigation project and housed at the University of Georgia in Athens. Raw material categories included locally available quartz, Piedmont chert, Coastal Plain chert, Ridge and Valley chert, and soapstone.

Lithic artifacts were also sorted by functional criteria relating to reduction or possible tool use. Tool and debris categories used in this report are based on definitions and descriptions presented in the works of Crabtree (1972), Collins (1975), Ensor (1981), Faulkner and McCollough (1973), and Chapman (1973). Debris categories related to the production of formal tools follow the sequence of reduction beginning with a core through the flake types associated with the final production of a bifacial or unifacial tool or the maintenance of that tool. A different sequence is associated with bipolar reduction and the production of small flakes utilized as expedient tools and more formalized microtools. A general list of debris categories used in this report includes cores of several types, core-trimming flakes, primary decortication flakes (listed in tables as primary flakes), secondary decortication flakes (listed in tables as secondary flakes), tertiary flakes, biface thinning flakes, flake fragments, and shatter. Chipped stone tools are sorted as preforms (early and late stages), finished bifaces or projectile point knives, unifacial tools, flake tools (a flake that appears to be shaped in part by deliberate retouch), and utilized flakes. More formal definitions of these categories follow.

Primary decortication flake: An essentially whole flake retaining 95% or more of the core’s original exterior surface (the word “cortex” is not entirely appropriate for the types of chunks for on upland quartz deposits, and may be of little technical importance).

Secondary decortication flake: A flake retaining any lesser amount of original surface or cortex (see above).

Tertiary flake: Also called an interior flake, a flake retaining essentially no original surface. Some flakes were apparently struck from thick, tabular cores, with the distal end of overshot flakes showing a small amount of weathered surface from the bottom of the core. These were counted as tertiary flakes.

Bifacial Thinning Flakes: Characteristics of true BTFs include good curvature, a dorsal surface showing flake scars indicative of bifacial structure, thinness, and a broad platform remnant with or without evidence of the original bifacial edge. Less formal "retouch" flakes are small flakes from the modification and rejuvenation of tools, presumably by pressure flaking.

Bipolar and Anvil Block Flakes: When distinguishable from other reduction products, flakes resulting from stationary core reduction (bipolar or anvil) were noted. Bipolar flakes are most often flat, with splinter-like pieces also common. Flakes exhibiting curvature may also occur. The key features of bipolar flakes are the absence of a bulb of force, proximal and distal crushing, dorsal faceting, and anomalous force lines on the ventral surface. Anvil block flakes are often thick (relative to length and width), have no appreciable bulb of force, and exhibit crushing and splintering at the point of initiation on the proximal end. Contact with the anvil sometimes results in crushing at the distal end. These reduction techniques are similar, and indeed overlap, yielding similar kinds of debris. In the analysis, flakes that could go into either category were noted as bipolar/anvil flakes.

Flake Fragments: Recognizable portions of flakes, curved or flat, with dorsal/ventral surfaces distinguishable from lateral breaks. A flake fragment is a broken flake that lacks the proximal end or striking platform.

Shatter: Angular reduction fragments. These are generally blocky with sharp edges and fresh fracture surfaces. Thick, blocky or angular fragments of flakes are considered shatter for this analysis.

Cores: Cores are divided into amorphous/multidirectional, thick bifacial, and anvil block/bipolar. Because anvil block reduction grades into bipolar, little effort was made to distinguish possible late stage anvil flaking material from bipolar cores. The defining characteristics used for bipolar cores include crushing at one or both ends, in conjunction with shearing (splitting) or multiple faceting along the long axis. Cores are regarded as any stone bearing direct evidence of prior flake removal. Core fragments exhibit complete or incomplete flake scars, with some indication of directionality. Fragmentary cores are listed as core fragments.

Preforms: Preforms represent different stages in the production of a formal biface for which the general shape of the final object is suggested. For this report, thick examples are considered early stage preforms and thinned examples are considered late stage preforms. Most preforms are broken which suggests manufacturing breakage.

Bifaces: A mid- to late-stage flaked tool showing flake removal on all surfaces. Small pieces of late-stage bifaces or pieces of projectile points (see following) are listed as biface fragments.
Projectile points (also Projectile Point/Knife or PP/K). A finished biface with a distinctive haft element that may be attributed to a specific time period.

Utilized Flakes: Flakes exhibiting wear, edge damage, or polish. Less objective criteria include flake form and “feel.” Working at a macroscopic level, or even with low magnification, it is sometimes difficult to determine conclusively if the wear is cultural or natural in origin, or if it is recent or old. Where possible, utilized flakes are subdivided provisionally into other categories, such burin-like, perforator-like, etc.

Flake Tools: These are essentially expedient tools that display haft-like areas that may have been formed by minimal retouch for shaping or through movement in the haft. Flake tools less than 2 cm in length may be referred to as microliths.

All chipped stone was examined through a low power magnifying glass. All chipped stone with possible retouch or use-wear was then examined under a 15 power stereoscopic microscope. Identifiable groundstone tools are described individually in the report. Other stone artifacts include fire cracked rock recognized by distinctive breakage patterns and in some instances reddening and "Lamar" red pebbles. Red pebbles represent another category utilized during the Wallace investigations and do appear to be associated with late Mississippian cooking activities. Published sources are provided when a named projectile point type is used in the report. A partial list of published projectile point publications include Baker (1995), Cambron and Hulse (1964), and Whatley (2002).

Curation

All artifacts, field maps and notes, photographs, analysis forms and other information generated by this project will be submitted to the University of Georgia’s Riverbend Facilities in Athens for permanent curation.